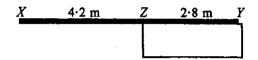

MECHANICS (A) UNIT 1

TEST PAPER 5

Take $g = 9.8 \text{ ms}^{-2}$ and give all answers correct to 3 significant figures where necessary.


 Two forces, both of magnitude 5 N, act on a particle in the directions with bearings 000° and 070°, as shown.
Calculate

- (a) the magnitude of the resultant force on the particle,
- (b) the bearing on which this resultant force acts.

(3 marks) (2 marks)

2. A uniform plank XY has length 7 m and mass 2 kg. It is placed with the portion ZY in contact with a horizontal surface, where ZY = 2.8 m. To prevent the plank from toppling, a stone is placed on the plank at Y.

(a) Find the smallest possible mass of the stone.

(4 marks)

- (b) State, with a reason, whether your answer to part (a) would be greater or smaller if a shorter portion of the plank were in contact with the surface. (2 marks)
- 3. A car, of mass 1800 kg, pulls a trailer of mass 350 kg along a straight horizontal road. When the car is accelerating at 0.2 ms⁻², the resistances to the motion of the car and trailer have magnitudes 300 N and 100 N respectively. Find, at this time,
 - (a) the driving force produced by the engine of the car,

(3 marks)

(b) the tension in the tow-bar between the car and the trailer.

(4 marks)

- 4. A train starts from rest at a station S and accelerates at a constant rate for 2x seconds to a speed of 5x ms⁻¹. It maintains this speed until 126 seconds after it left S and then decelerates at a constant rate until it comes to rest at another station T, 20x seconds after it left S.
 - (a) Sketch a velocity-time graph for this journey.

(4 marks)

Given that the distance between S and T is 5.4 km,

(b) show that $x^2 + 7x = 120$.

(4 marks)

(c) Find the value of x.

(3 marks)

MECHANICS 1 (A) TEST PAPER 5 Page 2

- 5. i and j are perpendicular unit vectors. The point A has position vector 6j m relative to an origin O. At time t = 0 a particle P starts from O and moves with constant velocity (5i + 2j) ms⁻¹. At the same instant a particle Q starts from A and moves with constant velocity 4i ms⁻¹.
 - (a) Write down the position vectors of P and of Q at time t seconds. (3 marks)
 - (b) Show that the distance d m between P and Q at time t seconds is such that

$$d^2 = 5t^2 - 24t + 36. ag{5 marks}$$

(c) Find the value of t for which d^2 is a minimum.

- (3 marks)
- (d) Hence find the minimum distance between P and Q, and state the position vector of each particle when they are closest together. (4 marks)
- 6. A, B and C are three small spheres of equal radii and masses 2m, m and 5m respectively. They are placed in a straight line on a smooth horizontal surface. A is projected with speed 6 ms⁻¹ towards B, which is at rest. When A hits B it exerts an impulse of magnitude 8m Ns on B.
 - (a) Find the speed with which B starts to move.

(2 marks)

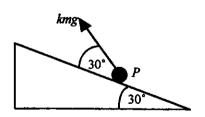
(b) Show that the speed of A after it collides with B is 2 ms^{-1} .

(3 marks)

After travelling 3 m, B hits C, which is then travelling towards B at 2.2 ms^{-1} . C is brought to rest by this impact.

(c) Show that the direction of B's motion is reversed and find its new speed.

(3 marks)


(d) Find how far B now travels before it collides with A again.

(6 marks)

(e) State a modelling assumption that you have made about the spheres.

(1 mark)

7. A particle P, of mass m, is in contact with a rough plane inclined at 30° to the horizontal as shown. A light string is attached to P and makes an angle of 30° with the plane. When the tension in this string has magnitude kmg, P is just on the point of moving up the plane.

- (a) Show that μ , the coefficient of friction between P and the plane, is $\frac{k\sqrt{3}-1}{\sqrt{3}-k}$. (7 marks)
- (b) Given further that $k = \frac{3\sqrt{3}}{7}$, deduce that $\mu = \frac{\sqrt{3}}{6}$.

(3 marks)

The string is now removed.

(c) Determine whether P will move down the plane and, if it does, find its acceleration.

(5 marks)

(d) Give a reason why the way in which P is shown in the diagram might not be consistent with the modelling assumptions that have been made. (1 mark)